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ABSTRACT

We describe recent breakthroughs in the field of compressed
data structures, in which the data structure is stored in a
compressed representation that still allows fast answers to
queries. We focus in particular on compressed data struc-
tures to support the important application of pattern match-
ing on massive document collections. Given an arbitrary
query pattern in textual form, the job of the data struc-
ture is to report all the locations where the pattern appears.
Another variant is to report all the documents that contain
at least one instance of the pattern. We are particularly
interested in reporting only the most relevant documents,
using a variety of notions of relevance. We discuss recently
developed techniques that support fast search in these con-
texts as well as under additional positional and temporal
constraints.

Categories and Subject Descriptors

E.4 [Data]: Coding and Information Theory—data com-
paction and compression; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms
and Problems—pattern matching ; H.3.1 [Information Stor-
age and Retrieval]: Content Analysis and Indexing—in-
dexing methods; H.3.2 [Information Storage and Re-
trieval]: Information Storage—file organization; H.3.3 [In-
formation Storage and Retrieval]: Information Search
and Retrieval—search process.

General Terms

Algorithms, Design, Performance, Theory.

Keywords

Compressed data structure, compression, data compression,
entropy, external memory, index, pattern matching, search.

1. Introduction
The field of compressed data structures began over 20 years
ago [9] with the goal of achieving fast query time while using
a compressed representation. The challenge is to construct a
compressed representation of the input data — substantially
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smaller than the original input size, ideally about the size of
the input data in entropy-compressed format — so that it
can be queried directly without need for decompression, yet
still provide the same functionality and speed as traditional
data structures.

In this invited presentation, we focus on the ubiquitous
problem of searching for a query pattern in a massive docu-
ment collection. Web search engines such as Google support
word-based search using the well-known inverted index: For
each word in the document collection, the inverted index
maintains a list of locations where the word appears. The
search for a particular word involves a simple ordered search
of the inverted index. However, in many applications, we
are interested in searching for a query pattern that is not
in word form — such as a partial word, multiword phrase,
or more generally an arbitrary sequence of characters. In
fact, in some document collections, there may be no natural
notion of “word” at all; examples include collections of DNA
sequences, protein data, music scores, Asian languages, and
other heterogeneous sources.

In all those cases, we must use an alternative to inverted
indexes. Suffix trees and suffix arrays provide the desired
functionality, but for massive document collections they use
an unacceptably large amount of space: A document collec-
tion containing n characters from an alphabet Σ occupies
n log |Σ| bits.1 However, a suffix tree or suffix array built on
that document collection requires O(n log n) bits, which in
practice is typically a factor of 4–15 times larger. And com-
pared with the size of the documents in compressed format,
the space blow-up is even more severe.

Theoretical breakthroughs just over a dozen years ago led
to the development of a new generation of space-efficient
search indexes. The compressed suffix array [5, 6, 14, 15, 4,
16] and the FM-index [1, 2, 3, 10] achieve high-order entropy
space compression, and their query time is proportional to
the query pattern size (in units of computer words) plus the
product of the output size and polylog n. Moreover, these
new indexes are self-indexing in that they can reconstruct
any part of the original document collection in a random-
access manner, and thus the document collection becomes
redundant and can be discarded. The net effect is that the
document collection can be completely replaced by a much
smaller index structure.

The output of all locations where a query pattern occurs
may be unmanageably large, and it is often more helpful to
report only the documents that contain the query pattern

1We assume for simplicity that |Σ| is a power of 2.
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rather than all the matching locations within those docu-
ments. It is even more meaningful to report only the most
relevant documents that contain the query pattern. We can
define relevance in various ways — such as by the frequency
of the pattern in the document, or perhaps by how close the
pattern is to other instances, or as in Google by the static
notion of the document’s PageRank.

The document indexing problem, for a query pattern and
query parameter k, is to find the top-k most relevant doc-
uments containing the pattern; in the absolute version, we
find those documents that have a relevance value of at least k.
We discuss recent advances [11, 7, 13, 17] in the standard
RAM model as well as in the external memory model [19],
when the data collection and the index are too massive to
fit into the internal memory of a computer and must instead
be stored externally, such as on disk. We give algorithmic
paradigms in these models for efficient indexing, including
dealing with approximations, and illustrate some biological
applications.

In summary, inverted indexes have well-known strengths:
They are relatively easy to implement using small amounts
of memory space. They can be readily adapted for efficient
implementation in external memory. They allow dynamic
updates and distributed operations. And they are easily
tuned for top-k applications. However, they are inherently
word-based and cannot readily handle searches for arbitrary
patterns. Nor are they self-indexing. An ongoing challenge
in the field is to simultaneously achieve the many advan-
tages inverted indexes offer as well as the important fea-
tures of self-indexing and the ability to search for general
patterns. In this presentation, we discuss several exciting
developments toward answering that challenge.

For more details, the reader is referred to surveys on in-
dexing for massive string data [12, 8] as well as to recent
papers with several co-authors, which can be found on the
author’s web page [18].
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